
图中都使用了分压的方式。好处是成本低,实现容易。如果两个电阻的温度系数相近,V尺寸又稳定,则分压也相对稳定。不过电阻分压无疑会加入电阻的热噪声,所以需要适当选用较小的电阻,另外图中未在Vcc和两个电阻之间加电容以降低噪声带宽的方式处理。 在a中,驱动电流 I=(Vcc* R2/(R1+R2))/R3 在b中,驱动电流 I=(Vcc* R1/(R1+R2))/R3 如果使用电压基准芯片的方式,可能多为1V及以上。 名义上用电阻分压的方式可以在a中降低一些运放电路的工作电压。在I=1mA时,a中驱动电桥的电压 V≈Vcc*R2/(R1+R2)+4V 。如果考虑电桥输入阻抗可能有更大的阻值(4~6kohm,多为4kohm左右),电桥+R3的驱动电压就可能在5~6V左右变动。另外,还要留意运放或者仪表放大器的输出电压值范围一般低于其供电电压,如果需要低于0.5V甚至1V以上。此时驱动产生恒电流的运放电路所需的工作电压就大约在7V以上。 当然我们也可以适当减小这个恒流电流,不过此时产品规格书中的FSO也将相应减小。我们还是可以通过比率的方式大致估算新的FSO。 在b中,由于三极管或者MOS管此时工作在线性放大状态,Vce或者Vds将完全取决于此时的电流值(比如1mA),以及R3的值(分压值)。设电桥输入阻抗为Rb。
设I=1mA,则电桥的压降约4V。假设Vce有1v的压降,那么在三极管e极处约有5V,基极,即运放的输出端电压至少应该有4.8~4.3V,再加上运放的运行工作电压和输出电压之间的限制要求,运放需要的工作电压来个6V是需要的。不过,如果我们降低电桥的驱动电流值(<1mA),则该电路工作在5V电压也是可以实现的。 a和b的差异还在于对第二阶段比如仪表放大器输入端的共模电压范围。同等情况下,b方式可以获得更小的共模电压值。不过对于一般实际应用而言,由初级输入共模电压产生的输出信号偏差在很多仪表放大器下都微不足道,所以a方式也是非常普遍的。当然,输入共模电压的大小也会影响仪表放大器的选择。

在此类传感器中,差分信号Vdiff 在0点的电压会有负值出现(如+/-2mV),则单端供电的设计需要添加偏置来抬高最后放大信号在0点的电压位置,以避免产生向下截止。一般仪表放大器第二级增益为1,添加偏置之后的输出信号为:
恒压激励下的温度补偿

图-6所示是温补的另外一种形式。其0点和桥臂TCR的稳步调整和横流方式相同,但是在FSO方面的温补和校准使用了串联电阻的形式(图-6中的R6,7)。 这里需要对我们的规格书上的输入阻抗作一点调整。正是由于这两个串联电阻,此类电桥的输入阻抗典型值一般为10kohm,而不是5kohm。 我们再参考公式2,3,5和6,在串联电阻之后,TCR和TCS都被相应减小。小编就不展开了,大家可以用前面的公式代进入试推导一下。 这类温补校准之后的产品,0点和FSO都较好地实现了一致性,产品的应用会简化为如下的方式。信号的放大处理可以较好地利用比率的方式进行,这样即使激励电压稍有变化,因为和ADC参考电平一致,就可以相互抵消。在产品规格书中,可能推荐使用了10VDC大小的激励,对应的FSO为100mV。如果需要,当然可以使用5VDC激励,相应的FSO也会降到约50mV,此时需要留意信噪比的变化。